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INTERACTION DESIGN BASICS 

Interaction design is about creating interventions in often complex situations using 

technology of many kinds including PC software, the web and physical devices. 

• Design involves: 

o achieving goals within constraints and trade-off between these 

o understanding the raw materials: computer and human 

o accepting limitations of humans and of design. 

• The design process has several stages and is iterative and never complete. 

• Interaction starts with getting to know the users and their context: 

o finding out who they are and what they are like . . .probably not like you! 

o talking to them, watching them. 

• Scenarios are rich design stories, which can be used and reused throughout design: 

o they help us see what users will want to do 

o they give a step-by-step walkthrough of users‘ interactions: including what they 

see, do and are thinking. 

• Users need to find their way around a system. This involves: 

o helping users know where they are, where they have been and what they can do 

next 

o creating overall structures that are easy to understand and fit the users‘ needs 

o designing comprehensible screens and control panels. 

• Complexity of design means we don‘t get it right first time: 

o so we need iteration and prototypes to try out and evaluate 

o but iteration can get trapped in local maxima, designs that have no simple 

improvements, but are not good theory and models can help give good start points. 

 
WHAT IS DESIGN? 

 
A simple definition is: achieving goals within constraints 

 
Goals : what is the purpose of the design we are intending to produce? Who is it for? Why do 

they want it? For example, if we are designing a wireless personal movie player, we may think 

about young affluent users wanting to watch the latest movies whilst on the move and download 

free copies, and perhaps wanting to share the experience with a few friends. 

UNIT II 

DESIGN & SOFTWARE PROCESS 

 
Interactive Design basics – process – scenarios – navigation – screen design – Iteration and 

prototyping. HCI in software process – software life cycle – usability engineering – Prototyping 

in practice – design rationale. Design rules – principles, standards, guidelines, rules. Evaluation 

Techniques – Universal Design. 
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Constraints: What materials must we use? What standards must we adopt? How much can it 

cost? How much time do we have to develop it? Are there health and safety issues? In the case 

of the personal movie player: does it have to withstand rain? Must we use existing video 

standards to download movies? Do we need to build in copyright protection? 

 
Trade-off Choosing which goals or constraints can be relaxed so that others can be met. For 

example, we might find that an eye-mounted video display, a bit like those used in virtual 

reality, would give the most stable image whilst walking along. However, this would not allow 

you to show friends, and might be dangerous if you were watching a gripping part of the movie 

as you crossed the road. 

 
The golden rule of design 

The designs we produce may be different, but often the raw materials are the same. This leads 

us to the golden rule of design: understand your materials 

• understand computers 

o limitations, capacities, tools, platforms 

• understand people 

o psychological, social aspects, human error. 

 
THE PROCESS OF DESIGN 

A system has been designed and built, and only when it proves unusable do they think 

to ask how to do it right! In other companies usability is seen as equivalent to testing – 

checking whether people can use it and fixing problems, rather than making sure they can 

from the beginning. In the best companies, however, usability is designed in from the start. 

 
Figure: Interaction design process 

 

Requirements – what is wanted The first stage is establishing what exactly is needed. As a 

precursor to this it is usually necessary to find out what is currently happening. 



 

 

 

2017R                                                         CS8079-HCI                                         ACADEMIC YEAR:2021-2022 

Analysis: The results of observation and interview need to be ordered in some way to bring 

out key issues and communicate with later stages of design. 

 

 
Design: Well, this is all about design, but there is a central stage when you move from what 

you want, to how to do it. There are numerous rules, guidelines and design principles that can 

be used to help 

Iteration and prototyping: Humans are complex and we cannot expect to get designs right 

first time. We therefore need to evaluate a design to see how well it is working and where there 

can be improvements. 

Implementation and deployment Finally, when we are happy with our design, we need to 

create it and deploy it. This will involve writing code, perhaps making hardware, writing 

documentation and manuals – everything that goes into a real system that can be given to others. 

SCENARIOS 
 

Scenarios are stories for design: rich stories of interaction. They are 

perhaps the simplest design representation, but one of the most flexible and powerful. Some 

scenarios are quite short: ‗the user intends to press the ―save‖ button, but accidentally presses 

the ―quit‖ button so loses his work‘. Others are focussed more on describing the situation or 

context. 

Scenarios force you to think about the design in detail and notice potential problems before 

they happen. What is the system doing now?‘. This can help to verify that the design would 

make sense to the user and also that proposed implementation architectures would work. 

In addition scenarios can be used to: 
 

Communicate with others – other designers, clients or users. It is easy to misunderstand each 

other whilst discussing abstract ideas. Concrete examples of use are far easier to share. 

Validate other models: A detailed scenario can be ‗played‘ against various more formal 

representations such as task models or dialog and navigation models . 

Express dynamics Individual screen shots and pictures give you a sense of what a system 

would look like, but not how it behaves. 

NAVIGATION DESIGN 
 

Navigation Design is the process or activity of accurately  ascertaining 

one's position and planning and following a route. the process or activity of accurately 

ascertaining one's position and planning and following a route. 

Widgets The appropriate choice of widgets and wording in menus and buttons will help you 

know how to use them for a particular selection or action. 
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Screens or windows You need to find things on the screen, understand the logical grouping 

of buttons. 

Navigation within the application You need to be able to understand what will happen 

when a button is pressed, to understand where you are in the interaction. 

Environment The word processor has to read documents from disk, perhaps some are on 

remote networks. You swap between applications, perhaps cut and paste. 

 

 

 

 
Local structure 

Table: Levels of interaction 

 

 

In an ideal world if users had perfect knowledge of what they wanted 

and how the system worked they could simply take the shortest path to what they want, pressing 

all the right buttons and links. The important thing is not so much that they take the most 

efficient route, but that at each point in the interaction they can make some assessment of 

whether they are getting closer to their (often partially formed) goal. 
 

To do this goal seeking, each state of the system or each screen needs to give the user enough 

knowledge of what to do to get closer to their goal. 

• knowing where you are 

• knowing what you can do 

• knowing where you are going – or what will happen 

• knowing where you‘ve been – or what you‘ve done. 

Global structure – hierarchical organization 
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The hierarchy links screens, pages or states in logical groupings. The 

Diagram gives a high-level breakdown of some sort of messaging system. This sort of hierarchy 

can be used purely to help during design, but can also be used to structure the actual system. 

For example, this may reflect the menu structure of a PC application or the site structure on the 

web. Any sort of information structuring is difficult, but there is evidence  that people find 

hierarchies simpler than most. One of the difficulties with organizing information or system 

functionality is that different people have different internal structures for their knowledge, and 

may use different vocabulary. 
 

Figure: Application functional hierarchy 
 

SCREEN DESIGN AND LAYOUT 
 

Tools for layout 
 

We have a number of visual tools available to help us suggest to the user appropriate ways to 

read and interact with a screen or device. 

 

 
Figure: Grouping related items in an order screen 

 

Grouping and structure 
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If things logically belong together, then we should normally physically group them together. 

This may involve multiple levels of structure. We can see a potential design for an ordering 

screen. Notice how the details for billing and delivery are grouped together spatially; also 

note how they are separated from the list of items actually ordered by a line as well as 

spatially. This reflects the following logical structure: 

Order: 
 

• Administrative information 

o Billing details 

o Delivery details 

• Order information 

o Order line 1 

o Order line 2 
 

Order of groups and items 
 

In general we need to think: what is the natural order for the user? This 

should normally match the order on screen. For data entry forms or dialog boxes we should 

also set up the order in which the tab key moves between fields. Occasionally we may also 

want to force a particular order; for example we may want to be sure that we do not forget the 

credit card details 

Decoration 
 

Decorative features like font style, and text or background colors can 

be used to emphasize groupings. 

Alignment 
 

Alignment of lists is also very important. For users who read text from 

left to right, lists of text items should normally be aligned to the left. Numbers, however, should 

normally be aligned to the right (for integers) or at the decimal point. This is because the shape 

of the column then gives an indication of magnitude – a sort of mini histogram. Items like 

names are particularly difficult. 

White space 
 

Spacing or whitespace, white space is any section of a document that 

is unused or space around an object. White spaces help separate paragraphs of text, graphics, 

and other portions of a document, and helps a document look less crowded. Using white space 

effectively in a document keeps the reader reading the document and helps the reader quickly 

find what they are interested in reading. 

How to create white space 
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White space is created by pressing the return key, spacebar key, or the 

tab key and can also be created by setting the document's margins and inserting form feeds or 

tables. 

User action and control 
 

• Entering information 

In each case the screen consists not only of information presented to 

the user, but also of places for the user to enter information or select options. Many of the same 

layout issues for data presentation also apply to fields for data entry. Alignment is still 

important. It is especially common to see the text entry boxes aligned in a jagged fashion 

because the field names are of different lengths. This is an occasion where right-justified text 

for the field labels may be best or, alternatively, in a graphical interface a smaller font can be 

used for field labels and the labels placed just above and to the left of the field they refer to. 

For both presenting and entering information a clear logical layout is important. 

The task analysis techniques can help in determining how to group 

screen items and also the order in which users are likely to want to read them or fill them in. 

Knowing also that users are likely to read from left to right and top to bottom (depending on 

their native language!) means that a screen can be designed so that users encounter items in an 

appropriate order for the task at hand. 

• Knowing what to do 

If everyone designs buttons to look the same and menus to look the 

same, then users will be able to recognize them when they see them. It is important that the 

labels and icons on menus are also clear. Standards can help for common actions such as save, 

delete or print. For more system-specific actions, one needs to follow broader principles. For 

example, a button says ‗bold‘: does this represent the current state of a system or the action 

that will be performed if the button is pressed? 

• Affordances 
 

These are especially difficult problems in multimedia applications 

where one may deliberately adopt a non-standard and avant-garde style. How are users 

supposed to know where to click? The psychological idea of affordance says that things may 

suggest by their shape and other attributes what you can do to them: a handle affords pulling 

or lifting; a button affords pushing. These affordances can be used when designing novel 

interaction elements. One can either mimic real-world objects directly, or try to emulate the 

critical aspects of those objects. What you must not do is depict a real-world object in a context 

where its normal affordances do not work! 

Appropriate appearance 
 

• Presenting information 



A 

 

 

e way of presenting information on screen depends on the kind of information: text, numbers, 

maps, tables; on the technology available to present it: character display, line drawing, 

graphics, and virtual reality; and, most important of all, on the purpose for which it is being 

used. The file listing is alphabetic, which is fine if we want to look up the details of a particular 

file, but makes it very difficult to find recently updated files. Of course, if the list were ordered 

by date then it would be difficult to find a particular file. Different purposes require different 

representations. For more complex numerical data, we may be considering scatter graphs, 

histograms or 3D surfaces; for hierarchical structures, we may consider outlines or organization 

diagrams. But, no matter how complex the data, the principle of matching presentation to 

purpose remains. We have an advantage when presenting information in an interactive system 

in that it is easy to allow the user to choose among several representations, thus making it 

possible to achieve different goals. 

 
 

Figure : Alphabetic file listing. Screen shot reprinted by permission from Apple Computer, 

Inc. 
 

Aesthetics and utility 
 

The beauty and utility may sometimes be at odds. For example, an 

industrial control panel will often be built up of the individual controls of several subsystems, 

some designed by different teams, some bought in. The resulting inconsistency in appearance 

may look a mess and suggest tidying up. Certainly some of this inconsistency may cause 

problems. 
 

The conflict between aesthetics and utility can also be seen in many 

‗well designed‘ posters and multimedia systems. In particular, the backdrop behind text must 

have low contrast in order to leave the text readable; this is often not the case and graphic 

designers may include excessively complex and strong backgrounds because they look good. 

The results are impressive, perhaps even award winning, but completely unusable! In consumer 

devices these aesthetic considerations may often be the key differentiator between 
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products, for example, the sleek curves of a car. This is not missed by designers of electronic 

goods: devices are designed to be good to touch and feel as well as look at and this is certainly 

one of the drivers for the futuristic shapes of the Apple iMac family. 

Making a mess of it: colour and 3D 
 

The increasing use of 3D effects in interfaces has posed a whole new 

set of problems for text and numerical information. Whilst excellent for presenting physical 

information and certain sorts of graphs, text presented in perspective can be very difficult to 

read and the all too common 3D pie chart is all but useless. 

Localization / internationalization 
 

If you are working in a different country, you might see a document 

being word processed where the text of the document and the file names are in the local 

language, but all the menus and instructions are still in English. The process of making software 

suitable for different languages and cultures is called localization or internationalization. 
 

It is clear that words have to change and many interface construction 

toolkits make this easy by using resources. When the program uses names of menu items, error 

messages and other text, it does not use the text directly, but instead uses a resource identifier, 

usually simply a number. A simple database is constructed separately that binds these 

identifiers to particular words and phrases. A different resource database is constructed for each 

language, and so the program can be customized to use in a particular country by simply 

choosing the appropriate resource database. 

ITERATION AND PROTOTYPING 
 

All interaction design includes some form of iteration of ideas. This 

often starts early on with paper designs and storyboards being demonstrated to colleagues and 

potential users. Any of these prototypes, whether paper-based or running software, can then be 

evaluated to see whether they are acceptable and where there is room for improvement. This 

sort of evaluation, intended to improve designs, is called formative evaluation. This is in 

contrast to summative evaluation, which is performed at the end to verify whether the product 

is good enough. One approach is to get an expert to use a set of guidelines, for example the 

‗knowing where you are‘ list above, and look screen by screen to see if there are any violations. 
 

The other main approach is to involve real users either in a controlled 

experimental setting, or ‗in the wild‘ – a real-use environment. The result of evaluating the 

system will usually be a list of faults or problems and this is followed by a redesign exercise, 

which is then prototyped, evaluated The end point is when there are no more problems that can 

economically be fixed. So iteration and prototyping are the universally accepted ‗best practice‘ 

approach for interaction design. 



 

 

 

Figure :Role of prototyping 
 

Prototyping is an example of what is known as a hill-climbing 

approach. Imagine you are standing somewhere in the open countryside. You walk uphill and 

keep going uphill as steeply as possible. Eventually you will find yourself at a hill top.is exactly 

how iterative prototyping works: you start somewhere, evaluate it to see how to make it better, 

change it to make it better and then keep on doing this until it can‘t get any better. 
 

Figure: Moving little by little ....... but to where? 
 

HCI IN THE SOFTWARE PROCESS 
 

• Software engineering provides a means of understanding the structure of the design 

process, and that process can be assessed for its effectiveness in interactive system 

design. 

• Usability engineering promotes the use of explicit criteria to judge the success of a 

product in terms of its usability. 

• Iterative design practices work to incorporate crucial customer feedback early in the 

design process to inform critical decisions which affect usability. 

• Design involves making many decisions among numerous alternatives. Design 

rationale provides an explicit means of recording those design decisions and the context 

in which the decisions were made. 

Software Life cycle models 
 

In the development of a software product, we consider two main 

parties: the customer who requires the use of the product and the designer who must provide 

the product. Typically, the customer and the designer are groups of people and some people 

can be both customer and designer. It is often important to distinguish between the customer 

who is the client of the designing company and the customer who is the eventual user of the 

system. These two roles of customer can be played by different people. The group of people 

who negotiate the features of the intended system with the designer may never be actual users 

of the system. This is often particularly true of web applications. In this chapter, we will use 



 

 

the term ‗customer‘ to refer to the group of people who interact with the design team and we 

will refer to those who will interact with the designed system as the user or end-user. 

The graphical representation is reminiscent of a waterfall, in which 

each activity naturally leads into the next. The analogy of the waterfall is not completely faithful 

to the real relationship between these activities, but it provides a good starting point for 

discussing the logical flow of activity. We describe the activities of this waterfall model  of the 

software life cycle 
 

Figure The activities in the waterfall model of the software life cycle 
 

Requirements specification 
 

Requirements specification begins at the start of product development. 

Though the requirements are from the customer‘s perspective, if they are to be met by the 

software product they must be formulated in a language suitable for implementation. 

Requirements are usually initially expressed in the native language of the customer. The 

executable languages for software are less natural and are more closely related to a 

mathematical language in which each term in the language has a precise interpretation, or 

semantics. The transformation from the expressive but relatively ambiguous natural language 

of requirements to the more precise but less expressive executable languages is one key to 

successful development. Task analysis techniques, which are used to express work domain 

requirements in a form that is both expressive and precise. 



 

 

Architectural design 
 

The requirements specification concentrates on what the system is 

supposed to do. The next activities concentrate on how the system provides the services 

expected from it. The first activity is a high-level decomposition of the system into components 

that can either be brought in from existing software products or be developed from scratch 

independently. An architectural design performs this decomposition. It is not only concerned 

with the functional decomposition of the system, determining which components provide 

which services. It must also describe the interdependencies between separate components and 

the sharing of resources that will arise between components. 

Detailed design 
 

The architectural design provides a decomposition of the system 

description that allows for isolated development of separate components which will later be 

integrated. For those components that are not already available for immediate integration, the 

designer must provide a sufficiently detailed description so that they may be implemented in 

some programming language. The detailed design is a refinement of the component description 

provided by the architectural design. The behaviour implied by the higher-level description 

must be preserved in the more detailed description. 

There will be more than one possible refinement of the architectural 

component that will satisfy the behavioural constraints. Choosing the best refinement is often 

a matter of trying to satisfy as many of the non-functional requirements of the system as 

possible. Thus the language used for the detailed design must allow some analysis of the design 

in order to assess its properties. 

Coding and unit testing 
 

The detailed design for a component of the system should be in such a 

form that it is possible to implement it in some executable programming language. After 

coding, the component can be tested to verify that it performs correctly, according to some test 

criteria that were determined in earlier activities. Research on this activity within the life cycle 

has concentrated on two areas. There is plenty of research that is geared towards the automation 

of this coding activity directly from a low-level detailed design. Most of the work in formal 

methods operates under the hypothesis that, in theory, the transformation from the detailed 

design to the implementation is from one mathematical representation to another and so should 

be able to be entirely automated. Other, more practical work concentrates on the automatic 

generation of tests from output of earlier activities which can be performed on a piece of code 

to verify that it behaves correctly. 

Integration and testing 
 

Once enough components have been implemented and individually 

tested, they must be integrated as described in the architectural design. Further testing is done 

to ensure correct behaviour and acceptable use of any shared resources. It is also possible at 

this time to perform some acceptance testing with the customers to ensure that the system 



 

 

meets their requirements. It is only after acceptance of the integrated system that the product 

is finally released to the customer. 

Maintenance 
 

After product release, all work on the system is considered under the 

category of maintenance, until such time as a new version of the product demands a total 

redesign or the product is phased out entirely. Consequently, the majority of the lifetime of a 

product is spent in the maintenance activity. Maintenance involves the correction of errors in 

the system which are discovered after release and the revision of the system services to satisfy 

requirements that were not realized during previous development. 

Validation and verification 
 

Throughout the life cycle, the design must be checked to ensure that it 

both satisfies the high-level requirements agreed with the customer and is also complete and 

internally consistent. These checks are referred to as validation and verification, respectively. 

Verification of a design will most often occur within a single life-cycle activity or between two 

adjacent activities. For example, in the detailed design of a component of a payroll accounting 

system, the designer will be concerned with the correctness of the algorithm to compute taxes 

deducted from an employee‘s gross income. 

The architectural design will have provided a general specification of 

the information input to this component and the information it should output. The detailed 

description will introduce more information in refining the general specification. The detailed 

design may also have to change the representations for the information and will almost certainly 

break up a single high-level operation into several low-level operations that can eventually be 

implemented. In introducing these changes to information and operations, the designer must 

show that the refined description is a legal one within its language (internal consistency) and 

that it describes all of the specified behaviour of the high-level description (completeness) in a 

provably correct way (relative consistency). Validation of a design demonstrates that within 

the various activities the customer‘s requirements are satisfied. Validation is a much more 

subjective exercise than verification, mainly because the disparity between the language of the 

requirements and the language of the design forbids any objective form of proof. In interactive 

system design, the validation against HCI requirements is often referred to as evaluation and 

can be performed by the designer in isolation or in cooperation with the customer. 



 

 

 

 

Figure: Feedback from maintenance activity to other design activities 
 

Management and contractual issues 
 

The life cycle described above concentrated on the more technical 

features of software development. In a technical discussion, managerial issues of design, such 

as time constraints and economic forces, are not as important. The different activities of the life 

cycle are logically related to each other. We can see that requirements for a system precede the 

high-level architectural design which precedes the detailed design, and so on. In reality, it is 

quite possible that some detailed design is attempted before all of the architectural design. In 

management, a much wider perspective must be adopted which takes into account the 

marketability of a system, its training needs, the availability of skilled personnel or possible 

subcontractors, and other topics outside the activities for the development of the isolated 

system. 

Interactive systems and the software life cycle 



 

 

 
 

Figure: Representing iteration in the waterfall model 
 

The life cycle for development we described above presents the 

process of design in a somewhat pipeline order. In reality, even for batch-processing systems, 

the actual design process is iterative, work in one design activity affecting work in any other 

activity either before or after it in the life cycle. 

A final point about the traditional software life cycle is that it does not 

promote the use of notations and techniques that support the user‘s perspective of the 

interactive system. We discussed earlier the purpose of validation and the formality gap. It is 

very difficult for an expert on human cognition to predict the cognitive demands that an abstract 

design would require of the intended user if the notation for the design does not reflect the kind 

of information the user must recall in order to interact. The same holds for assessing the timing 

behaviour of an abstract design that does not explicitly mention the timing characteristics of 

the operations to be invoked or their relative ordering. Though no structured development 

process will entirely eliminate the formality gap, the particular notations used can go a long 

way towards making validation of non-functional requirements feasible with expert assistance. 

In the remaining sections of this chapter, we will describe various approaches to augment the 

design process to suit better the design of interactive systems. These approaches are categorized 

under the banner of user-centred design. 

USABILITY ENGINEERING 



 

 

In relation to the software life cycle, one of the important features of 

usability engineering is the inclusion of a usability specification, forming part of the 

requirements specification that concentrates on features of the user–system interaction which 

contribute to the usability of the product. Various attributes of the system are suggested as 

gauges for testing the usability. For each attribute, six items are defined to form the usability 

specification of that attribute. 

Table : Sample usability specification for undo with a VCR 
 

Recoverability refers to the ability to reach a desired goal after 

recognition of some error in previous interaction. The recovery procedure can be in either a 

backward or forward sense. Current VCR design has resulted in interactive systems that are 

notoriously difficult to use; the redesign of a VCR provides a good case study for usability 

engineering. In designing a new VCR control panel, the designer wants to take into account 

how a user might recover from a mistake he discovers while trying to program the VCR to 

record some television program in his absence. One approach that the designer decides to 

follow is to allow the user the ability to undo the programming sequence, reverting the state of 

the VCR to what it was before the programming task began. The backward recoverability 

attribute is defined in terms of a measuring concept, which makes the abstract attribute more 

concrete by describing it in terms of the actual product. So in this case, we realize backward 

recoverability as the ability to undo an erroneous programming sequence. The measuring 

method states how the attribute will be measured, in this case by the number of explicit user 

actions required to perform the undo, regardless of where the user is in the programming 

sequence. The remaining four entries in the usability specification then provide the agreed 

criteria for judging the success of the product based on the measuring method. The now level 

indicates the value for the measurement with the existing system, whether it is computer based 

or not. The worst case value is the lowest acceptable measurement for the task, providing a 

clear distinction between what will be acceptable and what will be unacceptable in the final 

product. The planned level is the target for the design and the best case is the level which is 

agreed to be the best possible measurement given the current state of development tools and 

technology. In the example, the designers can look at their previous VCR products and those 

of their competitors to determine a suitable now level. In this case, it is determined that no 

current model allows an undo which returns the state of the VCR to what it was before the 

programming task. 



Az 

 

 hagiri.M Assistant Professor Department of computer science and Engineering 

Table: Criteria by which measuring method can be determined 
 

 

 

 

 

Table : Possible ways to set measurement levels in a usability specification 

 

Table: Examples of usability metrics from ISO 9241 

1. Time to complete a task 

2. Per cent of task completed 

3. Per cent of task completed per unit time 

4. Ratio of successes to failures 

5. Time spent in errors 

6. Per cent or number of errors 

7. Per cent or number of competitors better than it 

8. Number of commands used 

9. Frequency of help and documentation use 

10. Per cent of favorable/unfavorable user comments 

11. Number of repetitions of failed commands 

12. Number of runs of successes and of failures 

13. Number of times interface misleads the user 

14. Number of good and bad features recalled by users 

15. Number of available commands not invoked 

16. Number of regressive behaviors 

17. Number of users preferring your system 

18. Number of times users need to work around a problem 

19. Number of times the user is disrupted from a work task 

20. Number of times user loses control of the system 

21. Number of times user expresses frustration or satisfaction 
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Problems with usability engineering 
 

The major feature of usability engineering is the assertion of explicit 

usability metrics early on in the design process which can be used to judge a system once it is 

delivered. There is a very solid argument which points out that it is only through empirical 

approaches such as the use of usability metrics that we can reliably build more usable systems. 

Although the ultimate yardstick for determining usability may be by observing and measuring 

user performance, that does not mean that these measurements are the best way to produce a 

predictive design process for usability. 

The problem with usability metrics is that they rely on measurements 

of very specific user actions in very specific situations. When the designer knows what the 

actions and situation will be, then she can set goals for measured observations. However, at 

early stages of design, designers do not have this information. Take our example usability 

specification for the VCR. In setting the acceptable and unacceptable levels for backward 

recovery, there is an assumption that a button will be available to invoke the undo. In fact, the 

designer was already making an implicit assumption that the user would be making errors in 

the programming of the VCR. We should recognize another inherent limitation for usability 

engineering, which provides a means of satisfying usability specifications and not necessarily 

usability. The designer is still forced to understand why a particular usability metric enhances 

usability for real people. 

ITERATIVE DESIGN AND PROTOTYPING 
 

The design can then be modified to correct any false assumptions that 

were revealed in the testing. This is the essence of iterative design, a purposeful design process 

which tries to overcome the inherent problems of incomplete requirements specification by 

cycling through several designs, incrementally improving upon the final product with each 

pass. 

The problems with the design process, which lead to an iterative design philosophy, are not 

unique to the usability features of the intended system. The problem holds for requirements 

specification in general, and so it is a general software engineering problem, together with 

technical and managerial issues. On the technical side, iterative design is described by the use 

of prototypes, artifacts that simulate or animate some but not all features of the intended system. 

There are three main approaches to prototyping: 

Throw-away :The prototype is built and tested. The design knowledge gained from this 

exercise is used to build the final product, but the actual prototype is discarded. Figure depicts 

the procedure in using throw-away prototypes to arrive at a final requirements specification in 

order for the rest of the design process to proceed. 



 

 

 

Figure: Throw-away prototyping within requirements specification 
 

Incremental The final product is built as separate components, one at a time. There is one 

overall design for the final system, but it is partitioned into independent and smaller 

components. The final product is then released as a series of products, each subsequent release 

including one more component. 
 

Figure: Incremental prototyping within the life cycle 
 

Evolutionary Here the prototype is not discarded and serves as the basis for the next iteration 

of design. In this case, the actual system is seen as evolving from a very limited initial version 

to its final release, 

Evolutionary prototyping also fits in well with the modifications which must be made to the 

system that arise during the operation and maintenance activity in the life cycle. 

Prototypes differ according to the amount of functionality and 

performance they provide relative to the final product. An animation of requirements can 

involve no real functionality, or limited functionality to simulate only a small aspect of the 

interactive behavior for evaluative purposes. At the other extreme, full functionality can be 

provided at the expense of other performance characteristics, such as speed or error tolerance. 

Regardless of the level of functionality, the importance of a prototype lies in its projected 

realism. The prototype of an interactive system is used to test requirements by evaluating their 

impact with real users. An honest appraisal of the requirements of the final system can only be 

trusted if the evaluation conditions are similar to those anticipated for the actual operation. But 

providing realism is costly, so there must be support. 

Time Building prototypes takes time and, if it is a throw-away prototype, it can be seen as 

precious time taken away from the real design task. So the value of prototyping is only 

appreciated if it is fast, hence the use of the term rapid prototyping. Rapid development and 

manipulation of a prototype should not be mistaken for rushed evaluation which might lead to 



 

 

 

erroneous results and invalidate the only advantage of using a prototype in the first place. 

Planning Most project managers do not have the experience necessary for adequately planning 

and costing a design process which involves prototyping. 

Non-functional features Often the most important features of a system will be non- functional 

ones, such as safety and reliability, and these are precisely the kinds of features which are 

sacrificed in developing a prototype. For evaluating usability features of a prototype, response 

time – yet another feature often compromised in a prototype – could be critical to product 

acceptance. This problem is similar to the technical issue of prototype realism. 

Contracts The design process is often governed by contractual agreements between customer 

and designer which are affected by many of these managerial and technical issues. Prototypes 

and other implementations cannot form the basis for a legal contract, and so an iterative design 

process will still require documentation which serves as the binding agreement. There must be 

an effective way of translating the results derived from prototyping into adequate 

documentation. A rapid prototyping process might be amenable to quick changes, but that does 

not also apply to the design process. 

Techniques for prototyping 
 

Probably the simplest notion of a prototype is the storyboard, which is 

a graphical depiction of the outward appearance of the intended system, without any 

accompanying system functionality. Storyboards do not require much in terms of computing 

power to construct; in fact, they can be mocked up without the aid of any computing resource. 

The origins of storyboards are in the film industry, where a series of panels roughly depicts 

snapshots from an intended film sequence in order to get the idea across about the eventual 

scene. Similarly, for interactive system design, the storyboards provide snapshots of the 

interface at particular points in the interaction. Evaluating customer or user impressions of the 

storyboards can determine relatively quickly if the design is heading in the right direction. 

Modern graphical drawing packages now make it possible to create 

storyboards with the aid of a computer instead of by hand. Though the graphic design 

achievable on screen may not be as sophisticated as that possible by a professional graphic 

designer, it is more realistic because the final system will have to be displayed on a screen. 

Also, it is possible to provide crude but effective animation by automated sequencing through 

a series of snapshots. Animation illustrates the dynamic aspects of the intended user–system 

interaction, which may not be possible with traditional paper-based storyboards. If not 

animated, storyboards usually include annotations and scripts indicating how the interaction 

will occur. 

Limited functionality simulations 
 

Storyboards and animation techniques are not sufficient for this 

purpose, as they cannot portray adequately the interactive aspects of the system. To do this, 

some portion of the functionality must be simulated by the design team. Programming 



 

 

 

support for simulations means a designer can rapidly build graphical and textual interaction 

objects and attach some behaviour to those objects, which mimics the system‘s functionality. 

Once this simulation is built, it can be evaluated and changed rapidly to reflect the results of 

the evaluation study with various users. 

High-level programming support 
 

HyperTalk and many similar languages allow the programmer to attach 

functional behavior to the specific interactions that the user will be able to do, such as position 

and click on the mouse over a button on the screen. Previously, the difficulty of interactive 

programming was that it was so implementation dependent that the programmer would have to 

know quite a bit of intimate detail of the hardware system in order to control even the simplest 

of interactive behavior. These high-level programming languages allow the programmer to 

abstract away from the hardware specifics and think in terms that are closer to the way the input 

and output devices are perceived as interaction devices. The frequent conceptual model put 

forth for interactive system design is to separate the application functionality from its 

presentation. It is then possible to program the underlying functionality of the system and to 

program the behavior of the user interface separately. The job of a UIMS, then, is to allow the 

programmer to connect the behavior at the interface with the underlying functionality. 

Warning about iterative design 
 

The ideal model of iterative design, in whch a rapid prototype is designed, evaluated and 

modified until the best possible design is achieved in the given project time, is appealing. But 

there are two problems. 

First, it is often the case that design decisions made at the very beginning of the prototyping 

process are wrong and, in practice, design inertia can be so great as never to overcome an initial 

bad decision. So, whereas iterative design is, in theory, amenable to great changes through 

iterations, it can be the case that the initial prototype has bad features that will not be amended. 

The second problem is slightly more subtle, and serious. If, in the process of evaluation, a 

potential usability problem is diagnosed, it is important to understand the reason for the 

problem and not just detect the symptom. 

DESIGN RATIONALE 
 

Design rationale is the information that explains why a computer system is the way it is, 

including its structural or architectural description and its functional or behavioural description. 

In this sense, design rationale does not fit squarely into the software life cycle described in this 

chapter as just another phase or box. Rather, design rationale relates to an activity of both 

reflection (doing design rationale) and documentation (creating a design rationale) that occurs 

throughout the entire life cycle. 



 

 

 

In an explicit form, a design rationale provides a communication mechanism among the 

members of a design team so that during later stages of design and/or maintenance it is possible 

to understand what critical decisions were made, what alternatives were investigated (and, 

possibly, in what order) and the reason why one alternative was chosen over the others. This 

can help avoid incorrect assumptions later. 

• Accumulated knowledge in the form of design rationales for a set of products can be 

reused to transfer what has worked in one situation to another situation which has 

similar needs. The design rationale can capture the context of a design decision in order 

that a different design team can determine if a similar rationale is appropriate for their 

product. 

• The effort required to produce a design rationale forces the designer to deliberate more 

carefully about design decisions. The process of deliberation can be assisted by the 

design rationale technique by suggesting how arguments justifying or discarding a 

particular design option are formed. 

In the area of HCI, design rationale has been particularly important, again for several reasons: 
 

• There is usually no single best design alternative. More often, the designer is faced with 

a set of trade-offs between different alternatives. For example, a graphical interface may 

involve a set of actions that the user can invoke by use of  the mouse and the designer 

must decide whether to present each action as a ‗button‘ on the screen, which is always 

visible, or hide all of the actions in a menu which must be explicitly invoked before an 

action can be chosen. The former option maximizes the operation visibility but the latter 

option takes up less screen space. It would be up to the designer to determine which 

criterion for evaluating the options was more important and then communicating that 

information in a design rationale. 

• Even if an optimal solution did exist for a given design decision, the space of 

alternatives is so vast that it is unlikely a designer would discover it. In this case, it is 

important that the designer indicates all alternatives that have been investigated. Then 

later on it can be determined if she has not considered the best solution or had thought 

about it and discarded it for some reason. In project management, this kind of 

accountability for design is good. 

• The usability of an interactive system is very dependent on the context of its use. The 

flashiest graphical interface is of no use if the end-user does not have access to a high- 

quality graphics display or a pointing device. Capturing the context in which a design 

decision is made will help later when new products are designed. 

If the context remains the same, then the old rationale can be adopted without revision. If the 

context has changed somehow, the old rationale can be re-examined to see if any rejected 

alternatives are now more favourable or if any new alternatives are now possible. 

Process-oriented design rationale 
 

Rationale is based on Rittel‘s issue-based information system, or IBIS, a style for representing 

design and planning dialog developed in the 1970s. In IBIS (pronounced 



 

 

 

‗ibbiss‘), a hierarchical structure to a design rationale is created. A root issue is identified which 

represents the main problem or question that the argument is addressing. Various positions are 

put forth as potential resolutions for the root issue, and these are depicted as descendants in the 

IBIS hierarchy directly connected to the root issue. Each position is then supported or refuted 

by arguments, which modify the relationship between issue and position. The hierarchy grows 

as secondary issues are raised which modify the root issue in some way. Each of these 

secondary issues is in turn expanded by positions and arguments, further sub- issues, and so 

on. 
 

Figure: The structure of a gIBIS design rationale 
 

A graphical version of IBIS has been defined by Conklin and Yakemovic 

called gIBIS (pronounced ‗gibbiss‘), which makes the structure of the design rationale more 

apparent visually in the form of a directed graph which can be directly edited by the creator of 

the design rationale. Above figure gives a representation of the gIBIS vocabulary. Issues, 

positions and arguments are nodes in the graph and the connections between them are labeled 

to clarify the relationship between adjacent nodes. So, for example, an issue can suggest further 

sub-issues, or a position can respond to an issue or an argument can support a position. The 

gIBIS structure can be supported by a hypertext tool to allow a designer to create and browse 

various parts of the design rationale. 

Design space analysis 
 

MacLean and colleagues have proposed a more deliberative approach to design rationale which 

emphasizes a post hoc structuring of the space of design alternatives that have been considered 

in a design project. Their approach, embodied in the Questions, Options and Criteria (QOC) 

notation, is characterized as design space analysis issues raised based on 



 

 

 

reflection and understanding of the actual design activities. Questions in a design space analysis 

are therefore similar to issues in IBIS except in the way they are captured. Options provide 

alternative solutions to the question. They are assessed according to some criteria in order to 

determine the most favorable option. In Figure an option which is favorably assessed in terms 

of a criterion is linked with a solid line, whereas negative links have a dashed line. 
 

 

Figure: The QOC notation 
 

The key to an effective design space analysis using the QOC notation is deciding the right 

questions to use to structure the space and the correct criteria to judge the options. The initial 

questions raised must be sufficiently general that they cover a large enough portion of the 

possible design space, but specific enough that a range of options can be clearly identified. It 

can be difficult to decide the right set of criteria with which to assess the options. 

Structure-oriented technique, called Decision Representation Language (DRL), 

developed by Lee and Lai, structures the design space in a similar fashion to QOC, though its 

language is somewhat larger and it has a formal semantics. The questions, options and criteria 

in DRL are given the names: decision problem, alternatives and goals. QOC assessments are 

represented in DRL by a more complex language for relating goals to alternatives. The sparse 

language in QOC used to assess an option relative to a criterion (positive or negative 

assessment only) is probably insufficient, but there is a trade-off involved in adopting a more 

complex vocabulary which may prove too difficult to use in practice. The advantage of the 

formal semantics of DRL is that the design rationale can be used as a computational mechanism 

to help manage the large volume of information. For example, DRL can track the 



 

 

 

dependencies between different decision problems, so that subsequent changes to the design 

rationale for one decision problem can be automatically propagated to other dependent 

problems. Design space analysis directly addresses the claim that no design activity can hope 

to uncover all design possibilities, so the best we can hope to achieve is to document the small 

part of the design space that has been investigated. An advantage of the post hoc technique is 

that it can abstract away from the particulars of a design meeting and therefore represent the 

design knowledge in such a way that it can be of use in the design of other products. The major 

disadvantage is the increased overhead such an analysis warrants. More time must be taken 

away from the design activity to do this separate documentation task. When time is scarce, 

these kinds of overhead costs are the first to be trimmed. 

Psychological design rationale 
 

The final category of design rationale tries to make explicit the psychological claims 

of usability inherent in any interactive system in order better to suit a product for the tasks users 

have. This psychological design rationale has been introduced by Carroll and Rosson, and 

before we describe the application of the technique it is important to understand some of its 

theoretical background. 

When designing a new interactive system, the designers take into account the tasks 

that users currently perform and any new ones that they may want to perform. This task 

identification serves as part of the requirements for the new system, and can be done through 

empirical observation of how people perform their work currently and presented through 

informal language or a more formal task analysis language . When the new system is 

implemented, or becomes an artifact, further observation reveals that in addition to the required 

tasks it was built to support, it also supports users in tasks that the designer never intended. 

Once designers understand these new tasks, and the associated problems that arise between 

them and the previously known tasks, the new task definitions can serve as requirements for 

future artifacts. 

Carroll refers to this real-life phenomenon as the task–artifact cycle. He provides a good 

example of this cycle through the evolution of the electronic spreadsheet. When the first 

electronic spreadsheet, VisiCalc, was marketed in the late 1970s, it was presented simply as an 

automated means of supporting tabular calculation, a task commonly used in the accounting 

world. Within little over a decade of its introduction, the application of spreadsheets had far 

outstripped its original intent within accounting. Spreadsheets were being used for all kinds of 

financial analysis, ‗what-if ‘ simulations, report formatting and even as a general programming 

language paradigm! As the set of tasks expands, new spreadsheet products have flooded the 

marketplace trying to satisfy the growing customer base. Another good example of the task–

artifact cycle in action is with word processing, which was originally introduced to provide 

more automated support for tasks previously achieved with a typewriter and now provides users 

with the ability to carry out various authoring tasks that they never dreamed possible with a 

conventional typewriter. And today, the tasks for the spreadsheet and the word processor are 

intermingled in the same artifact. 



 

 

 

The purpose of psychological design rationale is to support this natural task– artifact cycle of 

design activity. The main emphasis is not to capture the designer‘s intention in building the 

artifact. Rather, psychological design rationale aims to make explicit the consequences of a 

design for the user, given an understanding of what tasks he intends to perform. Previously, 

these psychological consequences were left implicit in the design, though designers would 

make informal claims about their systems 

The first step in the psychological design rationale is to identify the tasks that the proposed 

system will address and to characterize those tasks by questions that the user tries to answer in 

accomplishing them. For instance, Carroll gives an example of designing a system to help 

programmers learn the Smalltalk object-oriented programming language environment. The 

main task the system is to support is learning how Smalltalk works. In learning about the 

programming environment, the programme will perform tasks that help her answer the 

questions: 

• What can I do: that is, what are the possible operations or functions that this 

programming environment allows? 

• How does it work: that is, what do the various functions do? 

• How can I do this: that is, once I know a particular operation I want to perform, 

• how do I go about programming it? 

DESIGN RULES 
 

• Designing for maximum usability is the goal of interactive systems design. 

• Abstract principles offer a way of understanding usability in a more general sense, 

especially if we can express them within some coherent catalog. 

• Design rules in the form of standards and guidelines provide direction for design, in 

both general and more concrete terms, in order to enhance the interactive properties of 

the system. 

• The essential characteristics of good design are often summarized through ‗golden 

rules‘ or heuristics. 

• Design patterns provide a potentially generative approach to capturing and reusing 

design knowledge. 

PRINCIPLES TO SUPPORT USABILITY 
 

The principles we present are first divided into three main categories: 
 

Learnability – the ease with which new users can begin effective interaction and achieve 

maximal performance. 

Flexibility – the multiplicity of ways in which the user and system exchange information. 
 

Robustness – the level of support provided to the user in determining successful achievement 

and assessment of goals. 



 

 

 

Table :Summary of principles affecting learnability 
 
 

 
Predictability 

 

Predictability of an interactive system is distinguished from deterministic behavior of the 

computer system alone. Most computer systems are ultimately deterministic machines, so that 

given the state at any one point in time and the operation which is to be performed at that time, 

there is only one possible state that can result. Predictability is a user-centered concept; it is 

deterministic behavior from the perspective of the user. It is not enough for the behavior of the 

computer system to be determined completely from its state, as the user must be able to take 

advantage of the determinism. 

Synthesizability 
 

When an operation changes some aspect of the internal state, it is important that the change is 

seen by the user. The principle of honesty relates to the ability of the user interface to provide 

an observable and informative account of such change. In the best of circumstances, this 

notification can come immediately, requiring no further interaction initiated by the user. At the 

very least, the notification should appear eventually, after explicit user directives to make the 

change observable. A good example of the distinction between immediacy and eventuality can 

be seen in the comparison between command language interfaces and visual desktop interfaces 

for a file management system. You have moved a file from one directory to another. The 

principle of honesty implies that after moving the file to its new location in the file system you 

are then able to determine its new whereabouts. In a command language system, you would 

typically have to remember the destination directory and then ask to see the contents of that 

directory in order to verify that the file has been moved (in fact, you would also have to check 

that the file is no longer in its original directory to determine that it has been moved and not 

copied). In a visual desktop interface, a visual representation (or icon) of the file is dragged 

from its original directory and placed in its destination directory where it remains visible 

(assuming the destination folder is selected to reveal its contents). In 



 

 

 

this case, the user need not expend any more effort to assess the result of the move operation. 

The visual desktop is immediately honest. 

Familiarity 
 

New users of a system bring with them a wealth of experience across a wide number of 

application domains. This experience is obtained both through interaction in thereal world and 

through interaction with other computer systems. For a new user, the familiarity of an 

interactive system measures the correlation between the user‘s existing knowledge and the 

knowledge required for effective interaction. For example, when word processors were 

originally introduced the analogy between the word processor and a typewriter was intended 

to make the new technology more immediately accessible to those who had little experience 

with the former but a lot of experience with the latter. Familiarity has to do with a user‘s first 

impression of the system. In this case, we are interested in how the system is first perceived 

and whether the user can determine how to initiate any interaction. 

Generalizability 
 

The generalizability of an interactive system supports this activity, leading to a more complete 

predictive model of the system for the user. We can apply generalization to situations in which 

the user wants to apply knowledge that helps achieve one particular goal to another situation 

where the goal is in some way similar. Generalizability can be seen as a form of consistency. 

Generalization can occur within a single application or across a variety of applications. For  

example, in a graphical drawing package that draws a circle as a constrained form of ellipse, 

we would want the user to generalize that a square can be drawn as a constrained rectangle. A 

good example of generalizability across a variety of applications can be seen in multi-

windowing systems that attempt to provide cut/paste/copy operations to all applications in the 

same way (with varying degrees of success). Generalizability within an application can be 

maximized by any conscientious designer. 

Consistency 
 

Consistency relates to the likeness in behavior arising from similar situations or 

similar task objectives. Consistency is probably the most widely mentioned principle in the 

literature on user interface design. ‗Be consistent!‘ we are constantly urged. The user relies on 

a consistent interface. However, the difficulty of dealing with consistency is that it can take 

many forms. Consistency is not a single property of an interactive system that is either satisfied 

or not satisfied. Instead, consistency must be applied relative to something. Thus we have 

consistency in command naming, or consistency in command/argument invocation. 

Consistency can be expressed in terms of the form of input expressions or output responses 

with respect to the meaning of actions in some conceptual model of the system. For example, 

before the introduction of explicit arrow keys, some word processors used the relative position 

of keys on the keyboard to indicate directionality for operations (for example, to move one 

character to the left, right, up or down).The conceptual model for display-based editing is a 

two-dimensional plane, so the user would think of certain classes of operations in 



 

 

 

terms of movements up, down, left or right in the plane of the display. Operations that required 

directional information, such as moving within the text or deleting some unit of text, could be 

articulated by using some set of keys on the keyboard that form a pattern consistent with up, 

down, left and right (for example, the keys e, x, s and d, respectively). For output responses, a 

good example of consistency can be found in a warnings system for an aircraft. Warnings to 

the pilot are classified into three categories, depending on whether the situation with the aircraft 

requires immediate recovery action, eventual but not immediate action, or no action at all 

(advisory) on the part of the crew. 

Flexibility 
 

Table: Summary of principles affecting flexibility 
 

Dialog initiative 
 

The system can initiate all dialog, in which case the user simply responds to requests for 

information. We call this type of dialog system pre-emptive. For example, a modal dialog  box 

prohibits the user from interacting with the system in any way that does not direct input to the 

box. Alternatively, the user may be entirely free to initiate any action towards the system, in 

which case the dialog is user pre-emptive. The system may control the dialog to the extent that 

it prohibits the user from initiating any other desired communication concerning the current 

task or some other task the user would like to perform. From the  user‘s perspective, a system-

driven interaction hinders flexibility whereas a user-driven interaction favours it. 

In general, we want to maximize the user‘s ability to pre-empt the system and minimize the 

system‘s ability to pre-empt the user. Although a system pre-emptive dialog is not desirable in 

general, some situations may require it. In a cooperative editor (in which two people edit a 



 

 

 

document at the same time) it would be impolite for you to erase a paragraph of text that your 

partner is currently editing. For safety reasons, it may be necessary to prohibit the user from 

the ‗freedom‘ to do potentially serious damage. A pilot about to land an aircraft in which the 

flaps have asymmetrically failed in their extended position2 should not be allowed to abort the 

landing, as this failure will almost certainly result in a catastrophic accident. 

Multi-threading 
 

A thread of a dialog is a coherent subset of that dialog. In the user–system dialog, we can 

consider a thread to be that part of the dialog that relates to a given user task. Multi-threading 

of the user–system dialog allows for interaction to support more than one task at a time. 

Concurrent multi-threading allows simultaneous communication of information pertaining to 

separate tasks. Interleaved multi-threading permits a temporal overlap between separate tasks, 

but stipulates that at any given instant the dialog is restricted to a single task. 

Task migratability 
 

Task migratability concerns the transfer of control for execution of tasks between system and 

user. It should be possible for the user or system to pass the control of a task over to the other 

or promote the task from a completely internalized one to a shared and cooperative venture. 

Hence, a task that is internal to one can become internal to the other or shared between the two 

partners. 

Substitutivity 
 

Substitutivity requires that equivalent values can be substituted for each other. For example, in 

considering the form of an input expression to determine the margin for a letter, you may want 

to enter the value in either inches or centimeters. You may also want to input the value 

explicitly (say 1.5 inches) or you may want to enter a calculation which produces the right input 

value (you know the width of the text is 6.5 inches and the width of the paper is 8.5 inches and 

you want the left margin to be twice as large as the right margin, so you enter 2/3 (8.5 − 6.5) 

inches). This input substitutivity contributes towards flexibility by allowing the user to choose 

whichever form best suits the needs of the moment. By avoiding unnecessary calculations in 

the user‘s head, substitutivity can minimize user errors and cognitive effort. 

Robustness 
 

A user is engaged with a computer in order to achieve some set of goals. The 

robustness of that interaction covers features that support the successful achievement and 

assessment of the goals. 

Observability 
 

Observability allows the user to evaluate the internal state of the system by means of its 

perceivable representation at the interface. Observability can be discussed through five other 

principles: browsability, defaults, reachability, persistence and operation visibility. 



 

 

 

Browsability allows the user to explore the current internal state of the system via the limited 

view provided at the interface. Usually the complexity of the domain does not allow the 

interface to show all of the relevant domain concepts at once. Indeed, this is one reason why 

the notion of task is used, in order to constrain the domain information needed at one time to a 

subset connected with the user‘s current activity. While you may not be able to view an entire 

document‘s contents, you may be able to see all of an outline view of the document, if you are 

only interested in its overall structure. Even with a restriction of concepts relevant to the current 

task, it is probable that all of the information a user needs to continue work on that task is not 

immediately perceivable. Or perhaps the user is engaged in a multi-threaded dialog covering 

several tasks. There needs to be a way for the user to investigate, or browse, the internal state. 

This browsing itself should not have any side-effects on that state; that is, the browsing 

commands should be passive with respect to the domain specific parts of the internal state. 

The availability of defaults can assist the user by passive recall .It also reduces the number of 

physical actions necessary to input a value. Thus, providing default values is a kind of error 

prevention mechanism. There are two kinds of default values: static and dynamic. Static 

defaults do not evolve with the session. They are either defined within the system or acquired 

at initialization. On the other hand, dynamic defaults evolve during the session. They are 

computed by the system from previous user inputs; the system is then adapting  default values. 

Reachability refers to the possibility of navigation through the observable system states. There 

are various levels of reachability that can be given precise mathematical definitions, but the 

main notion is whether the user can navigate from any given state to any other state. 

Reachability in an interactive system affects the recoverability of the system, as we will discuss 

later. In addition, different levels of reachability can reflect the amount of flexibility in the 

system as well, though we did not make that explicit in the discussion on flexibility. 

Persistence deals with the duration of the effect of a communication act and the ability of the 

user to make use of that effect. The effect of vocal communication does not persist except in 

the memory of the receiver. Visual communication, on the other hand, can remain as an object 

which the user can subsequently manipulate long after the act of presentation. If you are 

informed of a new email message by a beep at your terminal, you may know at that moment 

and for a short while later that you have received a new message. If you do not attend to that 

message immediately, you may forget about it. If, however, some persistent visual information 

informs you of the incoming message , then that will serve as a reminder that an unread message 

remains long after its initial receipt. 

Recoverability 
 

Recoverability is the ability to reach a desired goal after recognition of some error in a previous 

interaction. There are two directions in which recovery can occur, forward or backward. 

Forward error recovery involves the acceptance of the current state and negotiation from that 

state towards the desired state. Forward error recovery may be the only 



 

 

 

possibility for recovery if the effects of interaction are not revocable (for example, in building 

a house of cards, you might sneeze whilst placing a card on the seventh level, but you cannot 

undo the effect of your misfortune except by rebuilding). Backward error recovery is an attempt 

to undo the effects of previous interaction in order to return to a prior state before proceeding. 

In a text editor, a mistyped keystroke might wipe out a large section of text which you would 

want to retrieve by an equally simple undo button. Recovery can be initiated by the system or 

by the user. When performed by the system, recoverability is connected to the notions of fault 

tolerance, safety, reliability and dependability, all topics covered in software engineering. 

However, in software engineering this recoverability is considered only with respect to system 

functionality; it is not tied to user intent. When recovery is initiated by the user, it is important 

that it determines the intent of the user‘s recovery actions; that is, whether he desires forward 

(negotiation) or backward (using undo/redo actions) corrective action. 

Responsiveness 
 

Responsiveness measures the rate of communication between the system and the user. 

Response time is generally defined as the duration of time needed by the system to express 

state changes to the user. In general, short durations and instantaneous response times are 

desirable. Instantaneous means that the user perceives system reactions as immediate. But even 

in situations in which an instantaneous response cannot be obtained, there must be some  

 

indication to the user that the system has received the request for action and is working on a 

response. As significant as absolute response time is response time stability. Response time 

stability covers the invariance of the duration for identical or similar computational resources. 

For example, pull-down menus are expected to pop up instantaneously as soon as a mouse 

button is pressed. Variations in response time will impede anticipation exploited by motor skill. 

Task conformance 
 

Since the purpose of an interactive system is to allow a user to perform various tasks 

in achieving certain goals within a specific application domain, we can ask whether the system 

supports all of the tasks of interest and whether it supports these as the user wants. Task 

completeness addresses the coverage issue and task adequacy addresses the user‘s 

understanding of the tasks. It is not sufficient that the computer system fully implements some 

set of computational services that were identified at early specification stages. It is essential 

that the system allows the user to achieve any of the desired tasks in a particular work domain 

as identified by a task analysis that precedes system specification 

Task completeness refers to the level to which the system services can be mapped 

onto all of the user tasks. However, it is quite possible that the provision of a new computer 

based tool will suggest to a user some tasks that were not even conceivable before the tool. 

Therefore, it is also desirable that the system services be suitably general so that the user can 

define new tasks. 

STANDARDS 



 

 

 

Standards for interactive system design are usually set by national or international bodies to 

ensure compliance with a set of design rules by a large community. Standards can apply 

specifically to either the hardware or the software used to build the interactive system. Smith 

points out the differing characteristics between hardware and software, which affect the utility 

of design standards applied to them: 

Underlying theory Standards for hardware are based on an understanding of physiology or 

ergonomics/human factors, the results of which are relatively well known, fixed and readily 

adaptable to design of the hardware. On the other hand, software standards are based on theories 

from psychology or cognitive science, which are less well formed, still evolving and not very 

easy to interpret in the language of software design. Consequently, standards for hardware can 

directly relate to a hardware specification and still reflect the underlying theory, whereas 

software standards would have to be more vaguely worded. 

Change Hardware is more difficult and expensive to change than software, which is usually 

designed to be very flexible. Consequently, requirements changes for hardware do not occur as 

frequently as for software. Since standards are also relatively stable, they are more suitable for 

hardware than software. 

A given standards institution, such as the British Standards Institution (BSI) or the International 

Organization for Standardization (ISO) or a national military agency, has had standards for 

hardware in place before any for software. For example, the UK Ministry of Defence has 

published an Interim Defence Standard 00–25 on Human Factors for Designers of Equipment, 

produced in 12 parts: 

• Part 1 Introduction 

• Part 2 Body Size 

• Part 3 Body Strength and Stamina 

• Part 4 Workplace Design 

• Part 5 Stresses and Hazards 

• Part 6 Vision and Lighting 

• Part 7 Visual Displays 

• Part 8 Auditory Information 

• Part 9 Voice Communication 

• Part 10 Controls 

• Part 11 Design for Maintainability 

• Part 12 Systems 

One component of the ISO standard 9241, pertaining to usability specification, applies equally 

to both hardware and software design. In the beginning of that document, the following 

definition of usability is given: 

Usability The effectiveness, efficiency and satisfaction with which specified users achieve 

specified goals in particular environments. 



 

 

 

Effectiveness The accuracy and completeness with which specified users can achieve specified 

goals in particular environments. 

Efficiency The resources expended in relation to the accuracy and completeness of goals 

achieved. 

Satisfaction The comfort and acceptability of the work system to its users and other people 

affected by its use. 

GUIDELINES 
 

A major concern for all of the general guidelines is the subject of dialog styles, which in the 

context of these guidelines pertains to the means by which the user communicates input to the 

system, including how the system presents the communication device. Smith and Mosier 

identify eight different dialog styles and Mayhew identifies seven . The only real difference is 

the absence of query languages in Mayhew‘s list, but we can consider a query language as a 

special case of a command language 

Most guidelines are applicable for the implementation of any one of these dialog styles in 

isolation. It is also important to consider the possibility of mixing dialog styles in one 

application. In contrasting the action and language paradigms , we concluded that it is not 

always the case that one paradigm wins over the other for all tasks in an application and, 

therefore, an application may want to mix the two paradigms. This equates to a mixing of dialog 

styles – a direct manipulation dialog being suitable for the action paradigm and a command 

language being suitable for the language paradigm. Mayhew provides guidelines and a 

technique for deciding how to mix dialog styles. 

Table: Comparison of dialog styles mentioned in guidelines 
 

 

 
GOLDEN RULES AND HEURISTICS 

 

Shneiderman’s Eight Golden Rules of Interface Design 
 

They are intended to be used during design butcan also be applied, like Nielsen‘s heuristics, 

to the evaluation of systems. 



 

 

 

1. Strive for consistency in action sequences, layout, terminology, command use and so on. 
 

2. Enable frequent users to use shortcuts, such as abbreviations, special key sequences and 

macros, to perform regular, familiar actions more quickly. 

3. Offer informative feedback for every user action, at a level appropriate to the magnitude of 

the action. 

4. Design dialogs to yield closure so that the user knows when they have completed a task. 
 

5. Offer error prevention and simple error handling so that, ideally, users are prevented from 

making mistakes and, if they do, they are offered clear and informative instructions to enable 

them to recover. 

6. Permit easy reversal of actions in order to relieve anxiety and encourage exploration, since 

the user knows that he can always return to the previous state. 

7. Support internal locus of control so that the user is in control of the system, which responds 

to his actions. 

8. Reduce short-term memory load by keeping displays simple, consolidating multiple page 

displays and providing time for learning action sequences. 

9.  

Norman’s Seven Principles for Transforming Difficult Tasks into Simple Ones 
 

1. Use both knowledge in the world and knowledge in the head. People work better when the 

knowledge they need to do a task is available externally – either explicitly or through the 

constraints imposed by the environment. But experts also need to be able to internalize regular 

tasks to increase their efficiency. So systems should provide the necessary knowledge within 

the environment and their operation should be transparent to support the user in building an 

appropriate mental model of what is going on. 

2. Simplify the structure of tasks. Tasks need to be simple in order to avoid complex problem 

solving and excessive memory load. There are a number of ways to simplify the structure of 

tasks. One is to provide mental aids to help the user keep track of stages in a more complex 

task. Another is to use technology to provide the user with more information about the task and 

better feedback. A third approach is to automate the task or part of it, as long as this does not 

detract from the user‘s experience. The final approach to simplification is to change the 

natureof the task so that it becomes something more simple. In all of this, it is important not to 

take control away from the user. 

3. Make things visible: bridge the gulfs of execution and evaluation. The interface should make 

clear what the system can do and how this is achieved, and should enable the user to see clearly 

the effect of their actions on the system. 

4. Get the mappings right. User intentions should map clearly onto system controls. User 

actions should map clearly onto system events. So it should be clear what does what and by 



 

 

 

how much. Controls, sliders and dials should reflect the task – so a small movement has a 

small effect and a large movement a large effect. 

5. Exploit the power of constraints, both natural and artificial. Constraints are things in the 

world that make it impossible to do anything but the correct action in the correct way. A simple 

example is a jigsaw puzzle, where the pieces only fit together in one way. Here the physical 

constraints of the design guide the user to complete the task. 

6. Design for error. To err is human, so anticipate the errors the user could make and design 

recovery into the system. 

7. When all else fails, standardize. If there are no natural mappings then arbitrary mappings 

should be standardized so that users only have to learn them once. It is this standardization 

principle that enables drivers to get into a new car and drive it with very little difficulty – key 

controls are standardized. Occasionally one might switch on the indicator lights instead of the 

windscreen wipers, but the critical controls (accelerator, brake, clutch, steering) are always the 

same. 

EVALUATION TECHNIQUES 
 

• Evaluation 
 

– tests usability and functionality of system 
 

– occurs in laboratory, field and/or in collaboration with users 
 

– evaluates both design and implementation 
 

– should be considered at all stages in the design life cycle 
 

Goals of Evaluation 
 

• assess extent of system functionality 
 

• assess effect of interface on user 
 

• identify specific problems 
 

Types of evaluation 
 

• Depends on what criteria are used for classification. 
 

• Evaluation setting 
 

– Laboratory based 
 

• Rigorously planned 
 

• Controlled 
 

– Field study 



 

 

 

• Conducted in real situations 
 

• Typically less well controlled 
 

• Data obtained 
 

– Quantitative evaluation: typically objective 
 

– Qualitative evaluation: typically subjective 
 

• Context of the evaluation 
 

– Formative evaluation 
 

• Linked into design process 
 

• Guides design by providing feedback 
 

– Summative evaluation 
 

• After the product has been developed 
 

• Full assessment of finished product 

Evaluation techniques 

• Heuristic evaluation 
 

• Focus group 
 

• Cognitive walkthrough 
 

• Questionnaire 
 

• Interview 
 

• Think aloud 
 

• Eye tracking 
 

Evaluation techniques 
 

• Which technique(s) to use? 
 

– Depends on testing purposes 
 

– Depends on the stage in the development cycle 
 

– Depends on resources available 
 

• E.g. time, availability or expertise & equipment, access to users 
 

– Can be used in combination 



 

 

 

Usability evaluation 
 

• Analytic inspection: 
 

– Heuristic Evaluation 
 

• Principles, Guidelines 
 

– Cognitive walkthroughs 
 

• Based on task scenarios 
 

• Empirical evaluation: 
 

– Usability Test 
 

• Observation, problem identification 
 

– Controlled Experiment 
 

• Formal controlled scientific experiment 
 

• Comparisons, statistical analysis 
 


